skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stieberger, Stephan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential equations are powerful tools in the study of correlation functions in conformal field theories (CFTs). Carrollian amplitudes behave as correlation functions of Carrollian CFT that holographically describes asymptotically flat spacetime. We derive linear differential equations satisfied by Carrollian MHV gluon and graviton amplitudes. We obtain non-distributional solutions for both the gluon and graviton cases. We perform various consistency checks for these differential equations, including compatibility with conformal Carrollian symmetries. 
    more » « less
  2. Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial. 
    more » « less
  3. We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon light cone energies while their positions are determined by the gluon momentum directions. Tree-level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By comparing subleading corrections, we find b^2=(8π^2)^{−1}b_0g^2(M), where b is the Liouville coupling constant, g(M) is the Yang Mills coupling at the renormalization scale M and b_0 is the one-loop coefficient of the Yang-Mills beta function. 
    more » « less
  4. A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT. 
    more » « less
  5. A bstract In a recent paper, here referred to as part I, we considered the celestial four-gluon amplitude with one gluon represented by the shadow transform of the corresponding primary field operator. This correlator is ill-defined because it contains branch points related to the presence of conformal blocks with complex spin. In this work, we adopt a procedure similar to minimal models and construct a single-valued completion of the shadow correlator, in the limit when the shadow is “soft.” By following the approach of Dotsenko and Fateev, we obtain an integral representation of such a single-valued correlator. This allows inverting the shadow transform and constructing a single-valued celestial four-gluon amplitude. This amplitude is drastically different from the original Mellin amplitude. It is defined over the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties. It agrees with all known OPEs of celestial gluon operators. The conformal block spectrum consists of primary fields with dimensions ∆ = m + iλ , with integer m ≥ 1 and various, but always integer spin, in all group representations contained in the product of two adjoint representations. 
    more » « less
  6. null (Ed.)
    A bstract In celestial conformal field theory, gluons are represented by primary fields with dimensions ∆ = 1 + iλ , λ ∈ ℝ and spin J = ±1, in the adjoint representation of the gauge group. All two- and three-point correlation functions of these fields are zero as a consequence of four-dimensional kinematic constraints. Four-point correlation functions contain delta-function singularities enforcing planarity of four-particle scattering events. We relax these constraints by taking a shadow transform of one field and perform conformal block decomposition of the corresponding correlators. We compute the conformal block coefficients. When decomposed in channels that are “compatible” in two and four dimensions, such four-point correlators contain conformal blocks of primary fields with dimensions ∆ = 2 + M + iλ , where M ≥ 0 is an integer, with integer spin J = −M, −M + 2 , … , M − 2 , M . They appear in all gauge group representations obtained from a tensor product of two adjoint representations. When decomposed in incompatible channels, they also contain primary fields with continuous complex spin, but with positive integer dimensions. 
    more » « less
  7. null (Ed.)
    A bstract Conformally soft gluons are conserved currents of the Celestial Conformal Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though does not generate the correct conformal transformations for hard states. In Einstein-Yang- Mills theory, we consider an alternative construction of the energy-momentum tensor, similar to the double copy construction which relates gauge theory amplitudes with gravity ones. This energy momentum tensor has the correct properties to generate conformal transformations for both soft and hard states. We extend this construction to supertranslations. 
    more » « less
  8. null (Ed.)
    A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents. 
    more » « less